WASHINGTON, D.C. --
In Washington, new weekly statistics that will be released by the US
Drought Monitor this and next week are expected to show that recent
rains are beginning to ease drought conditions in the Midwest.
Accordingly, corn futures have begun to back of substantially
from their record highs last week (reaching $8.34, but now down to $7.88
for the July contract and $6.64 for the September contract on CBOT.
But the impact of drought has focused increasing attention on feedstocks — especially novel feedstocks.
What are we doing about drought-resistance and heat-tolerance? What are we doing about diversifying beyond potentially scarce feedstocks that are shared with food and feed markets?
As Raymond James analyst Pavel Molchanov wrote in a research note this week on Ceres: “Intensely hot summers are becoming a reality that crop growers — and biofuel producers — have to address. In this context, energy crops provide a vital source of feedstock diversification, especially given that these crops, as a rule, provide a higher degree of drought resistance than, say, sugarcane. With this in mind, the Brazilian government is starting to encourage growers to adopt sweet sorghum. As part of a broader loan package for the agricultural sector, R270 million is allocated to sweet sorghum plantings.”
Out of 60 active feedstocks under development for biofuels, the USDA and DOE answered some of those questions this week by announcing a $41 million investment in 13 projects that will drive more efficient biofuels production and feedstock improvements.
In all, 13 feedstocks were the subject of the new research initiatives — almost one-quarter of the feedstocks out there as a whole received a boost.
The main thrust: reinforcing biofuels’s primary driver of yield and value — genomics.
Toolkits for analysis, yield improvements, and identifying target genes are common themes in the projects. A regular refrain:” “poorly understood,” reminding us that as much as bioenergy as a system, and crops as a system are increasingly understood, we are just beginning to scratch the potential in our understanding of feedstocks, and biofuels itself — as a system of systems.
New Biomass Research and Development Initiative Investments
Through the joint Biomass Research and Development Initiative (BRDI), USDA and the Energy Department announced five new feedstock cost-share projects.
Quad County Corn Cooperative ($4.25 million — Galva, Iowa)
This project will retrofit an existing corn starch ethanol plant to add value to its byproducts, which will be marketed to the non-ruminant feed markets and to the biodiesel industry. This project enables creation of diverse product streams from this facility, opening new markets for the cooperative and contributing to the U.S. Environmental Protection Agency’s goals for cellulosic ethanol production and use.
Agricultural Research Service’s National Center for Agricultural Utilization Research ($7 million — Peoria, Illinois)
This project will optimize rapeseed/canola, mustard, and camelina oilseed crops for oil quality and yield using recombinant inbred lines. Remote sensing and crop modeling will enhance production strategies to incorporate these crops into existing agricultural systems across four ecoregions in the Western United States. The oils will be hydrotreated to produce diesel and jet fuel.
Cooper Tire & Rubber Co. ($6.85 million — Findlay, Ohio)
Guayule is a hardwood perennial natural rubber-producing shrub grown in the semi-arid southwestern United States. This project will optimize production and quality of guayule rubber using genomic sequencing and development of molecular markers. The extracted rubber will be used in tire formulations, and the remaining plant residue will be evaluated for use in biopower and for conversion to jet fuel precursors.
University of Wisconsin ($7 million — Madison, Wisconsin)
This project will utilize dairy manure as a source of fiber and fertilizer. Fiber will be converted to ethanol, manure used for fertilizer, and oil from the crops will be converted to biodiesel used in farm equipment. The project goal is to develop closed-loop systems with new product streams that benefit the environment.
University of Hawaii ($6 million — Manoa, Hawaii)
This project will optimize the production of grasses in Hawaii, including napier grass, energycane, sugarcane, and sweet sorghum. Harvest and preprocessing will be optimized to be compatible with the biochemical conversion to jet fuel and diesel.
The project will seek to develop high-yielding biofuel feedstocks that are economically viable and sustainable; to establish advanced local biofuel production processes; and to guide development of an advanced biofuel supply chain. CTAHR faculty from the departments of Molecular Biosciences and Bioengineering, Tropical Plant and Soil Sciences, and Natural Resources and Environmental Management are partnering with researchers from Oregon State and Washington State University and with ZeaChem, Hawaiian Commercial and Sugar Company, and Hawai‘i BioEnergy LLC.
It will also develop ways to assess the sustainability of renewable energy production in Hawai‘i, focusing on investigating the development of a rural-based decentralized pre-processing system.
Leveraging Genomics for More Efficient, Cost-Effective Bioenergy
Also, the Energy Department and USDA announced $10.1 million for eight research projects aimed at applying biomass genomics to improve promising biofuel feedstocks and drive more efficient, cost-effective energy production. These projects will use genetic mapping to advance sustainable biofuels production by analyzing and seeking to maximize genetic traits like feedstock durability, how tolerant feedstocks are to various environmental stresses, and the potential for feedstocks to be used in energy production.
Functional Gene Discovery and Characterization of Genes and Alleles Affecting Wood Biomass Yield and Quality in Populus
Victor Busov, Michigan Technological University, Houghton $1,097,567
Goal: To discover and characterize novel genes and alleles that affect wood biomass yield and quality in Populus. By combining mutagenesis for functional identification of genes with next generation sequencing technologies for identification of alleles with breeding values, these discoveries can enable knowledge-based approaches for development of specialized bioenergy poplar cultivars.
http://www.renewableenergyworld.com/rea/news/article/2012/07/pursuing-abundance-usda-doe-invest-41m-to-drive-biofuels-feedstock-yields-diversification
But the impact of drought has focused increasing attention on feedstocks — especially novel feedstocks.
What are we doing about drought-resistance and heat-tolerance? What are we doing about diversifying beyond potentially scarce feedstocks that are shared with food and feed markets?
As Raymond James analyst Pavel Molchanov wrote in a research note this week on Ceres: “Intensely hot summers are becoming a reality that crop growers — and biofuel producers — have to address. In this context, energy crops provide a vital source of feedstock diversification, especially given that these crops, as a rule, provide a higher degree of drought resistance than, say, sugarcane. With this in mind, the Brazilian government is starting to encourage growers to adopt sweet sorghum. As part of a broader loan package for the agricultural sector, R270 million is allocated to sweet sorghum plantings.”
Out of 60 active feedstocks under development for biofuels, the USDA and DOE answered some of those questions this week by announcing a $41 million investment in 13 projects that will drive more efficient biofuels production and feedstock improvements.
In all, 13 feedstocks were the subject of the new research initiatives — almost one-quarter of the feedstocks out there as a whole received a boost.
The main thrust: reinforcing biofuels’s primary driver of yield and value — genomics.
Toolkits for analysis, yield improvements, and identifying target genes are common themes in the projects. A regular refrain:” “poorly understood,” reminding us that as much as bioenergy as a system, and crops as a system are increasingly understood, we are just beginning to scratch the potential in our understanding of feedstocks, and biofuels itself — as a system of systems.
New Biomass Research and Development Initiative Investments
Through the joint Biomass Research and Development Initiative (BRDI), USDA and the Energy Department announced five new feedstock cost-share projects.
Quad County Corn Cooperative ($4.25 million — Galva, Iowa)
This project will retrofit an existing corn starch ethanol plant to add value to its byproducts, which will be marketed to the non-ruminant feed markets and to the biodiesel industry. This project enables creation of diverse product streams from this facility, opening new markets for the cooperative and contributing to the U.S. Environmental Protection Agency’s goals for cellulosic ethanol production and use.
Agricultural Research Service’s National Center for Agricultural Utilization Research ($7 million — Peoria, Illinois)
This project will optimize rapeseed/canola, mustard, and camelina oilseed crops for oil quality and yield using recombinant inbred lines. Remote sensing and crop modeling will enhance production strategies to incorporate these crops into existing agricultural systems across four ecoregions in the Western United States. The oils will be hydrotreated to produce diesel and jet fuel.
Cooper Tire & Rubber Co. ($6.85 million — Findlay, Ohio)
Guayule is a hardwood perennial natural rubber-producing shrub grown in the semi-arid southwestern United States. This project will optimize production and quality of guayule rubber using genomic sequencing and development of molecular markers. The extracted rubber will be used in tire formulations, and the remaining plant residue will be evaluated for use in biopower and for conversion to jet fuel precursors.
University of Wisconsin ($7 million — Madison, Wisconsin)
This project will utilize dairy manure as a source of fiber and fertilizer. Fiber will be converted to ethanol, manure used for fertilizer, and oil from the crops will be converted to biodiesel used in farm equipment. The project goal is to develop closed-loop systems with new product streams that benefit the environment.
University of Hawaii ($6 million — Manoa, Hawaii)
This project will optimize the production of grasses in Hawaii, including napier grass, energycane, sugarcane, and sweet sorghum. Harvest and preprocessing will be optimized to be compatible with the biochemical conversion to jet fuel and diesel.
The project will seek to develop high-yielding biofuel feedstocks that are economically viable and sustainable; to establish advanced local biofuel production processes; and to guide development of an advanced biofuel supply chain. CTAHR faculty from the departments of Molecular Biosciences and Bioengineering, Tropical Plant and Soil Sciences, and Natural Resources and Environmental Management are partnering with researchers from Oregon State and Washington State University and with ZeaChem, Hawaiian Commercial and Sugar Company, and Hawai‘i BioEnergy LLC.
It will also develop ways to assess the sustainability of renewable energy production in Hawai‘i, focusing on investigating the development of a rural-based decentralized pre-processing system.
Leveraging Genomics for More Efficient, Cost-Effective Bioenergy
Also, the Energy Department and USDA announced $10.1 million for eight research projects aimed at applying biomass genomics to improve promising biofuel feedstocks and drive more efficient, cost-effective energy production. These projects will use genetic mapping to advance sustainable biofuels production by analyzing and seeking to maximize genetic traits like feedstock durability, how tolerant feedstocks are to various environmental stresses, and the potential for feedstocks to be used in energy production.
Functional Gene Discovery and Characterization of Genes and Alleles Affecting Wood Biomass Yield and Quality in Populus
Victor Busov, Michigan Technological University, Houghton $1,097,567
Goal: To discover and characterize novel genes and alleles that affect wood biomass yield and quality in Populus. By combining mutagenesis for functional identification of genes with next generation sequencing technologies for identification of alleles with breeding values, these discoveries can enable knowledge-based approaches for development of specialized bioenergy poplar cultivars.
http://www.renewableenergyworld.com/rea/news/article/2012/07/pursuing-abundance-usda-doe-invest-41m-to-drive-biofuels-feedstock-yields-diversification
No comments:
Post a Comment